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Abstract: Chinese Lattices are popular artifacts, frequently used in Chinese windows, doors and de-

corative furniture. In this paper we will look at them from an algorithmic point of view. We will be 

interested in developing the simplest possible algorithms that one can use to create such lattices 

with a computer or model them with wooden sticks.  To develop these algorithms, we will use 

MATLAB
®

 Symbolic Math Toolbox
®

. All algorithms in this paper will be written in the form of 

MuPAD
®

 programs
1
. Throughout the paper, we will use only short snippets of MuPAD code. The 

complete MuPAD programs will be enclosed in the appendices.     

1   Introduction 

The climate of South-East Asia is hot and humid. For this reason, traditional architecture in all 

the countries in this region is very spacious and contains a lot of openings. In order to protect the 

inhabitants and to stop birds and small animals entering houses, people protected window and door 

openings using wooden grids. Later, these wooden grids evolved into a very sophisticated form of 

applied art known as Chinese lattices. Although the name suggest China as the place of origin of 

Chinese lattices, we can find them in many other countries in the Far East, e.g. in Korea, Japan or 

Vietnam. Today, in many Far East countries Chinese lattices are used not only as protection for 

window openings but also as dividers of large interiors or as decorations on walls and in furniture. 

Chinese lattices from China itself are stylistically slightly different to those from Japan or Ko-

rea. However, in each case, we usually deal with a creation that can be very intriguing for a mathe-

matician or a computer scientist. 

The photograph on the next page shows Chinese lattices in Zhouzhuang village near Shanghai. 

The village, or rather a small city, is known as the oldest Chinese village on water. The village was 

restored recently and it contains a number of 800 year-old houses with very traditional Chinese lat-

tices. We can find similar creations in the imperial palace in Nanjing, in the old towns in Shanghai, 

Beijing and other Chinese towns, as well as in completely new apartments or villas in China. 

                                                 
1
 Since September 2008 MuPAD

®
 is used as the computing engine for the MATLAB

®
 Symbolic Math Toolbox. 

MATLAB and Symbolic Math Toolbox are registered trademarks of The MathWorks, Inc. MuPAD is registered 

trademark of SciFace Software GmbH & Co.KG. 
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Chinese lattices are very in-

teresting objects from a mathe-

matical point of view. They con-

tain many sophisticated mathe-

matical patterns. Analyzing 

these lattices with Computer 

Algebra Systems (CAS) often 

lets us recover the algorithms 

used to create these patterns. We 

can model them using any CAS 

where algorithmic constructions 

are available. In many cases, a 

form of turtle graphics and L-

systems can be very useful. 

In this paper, we will con-

centrate on three simple exam-

ples of Chinese lattices. If we 

wanted to describe the mathe-

matical nature of some of the 

more complex lattices, we 

would need more than a few 

pages of a journal paper.  

In our investigations, we 

will use MuPAD, a modern 

Computer Algebra System that 

is a part of Symbolic Math 

Toolbox available for Matlab 

software. MuPAD was devel-

oped by a group of scientists 

from Paderborn University, in 

Germany. MuPAD’s develop-

ment is now continued by Sci-

Face Software GmbH & Co. KG 

– a computer company specia-

lizing in software for scientific 

research. MuPAD contains all 

the tools that we need to model and visualize Chinese lattices (see [3]).  

The literature for Chinese lattices is very limited. There are only two books (see [1, 2]) written 

by Daniel Sheets Dye – former professor at West China Union University Chengtu. These two 

books contain thousands of drawings of Chinese lattices from various places in West China col-

lected by the author since 1916 until his death on January 16, 1936. There is not much written in-

formation about these examples – just some basic classification and location data. In China there is 

available a reference book (see [4]) on classical Chinese windows and doors with hundreds of pho-

tographs showing Chinese lattices. There are very few papers on Chinese lattices and only one or 

two simple web pages on the Internet.  

 

Fig. 1 Street in Zhouzhuang village, most of windows covered by a lattice 
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2   Getting started with algorithms 

In this paper we will briefly describe three methods of creating Chinese lattices. However, we 

are not trying to make any systematic analysis of algorithms used to create such lattices. We also do 

not claim that the methods described here are the only ones that exist. We will concentrate mostly 

on two of these methods by showing examples of algorithms. We, the authors, believe that it is 

worthwhile to investigate the mathematical and algorithmic nature of Chinese lattices and this pa-

per is just a starting point for these investigations. 

 

Grid-based lattices: By analyzing the available images we can observe that many lattices were 

formed by creating a grid and filling it by a repeating element or elements. The grid can be rectan-

gular, hexagonal, octagonal, triangular, etc. The grid can be uniform or have one, two or more gaps 

in the middle – the so-called foci of attention. The filling pattern can be placed in a uniform way, 

i.e. each of its instances oriented the same way, or rotated, or mirrored. A typical example of such a 

lattice is shown in figure 2. It happens frequently that the whole lattice is filled by a pattern without 

creating a grid. In such cases, instances of the pattern are joined together without a grid. An exam-

ple of such a pattern is shown in figure 3.    

  
Fig. 2 Rectangular grid with mirrored elements Fig. 3 Chinese lattice filled with pattern and no base grid 
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Block-based lattices: There are many Chinese lattices where a simple block was created first and 

then multiple copies of it assembled in a large lattice with multiple rows and columns. This reminds 

us tiling techniques where one or more base tiles were used to create a large, sometimes infinite, 

pattern. In the case of Chinese lattices the pattern is always finite but we can easily imagine that the 

pattern could extend horizontally and vertically long enough to be considered as infinite. An exam-

ple of such lattice is shown in figure 4.  

 

 
Fig. 4 Chinese lattice constructed from multiple identical blocks 

 

Lattices with non-repeating blocks: Finally, there are Chinese lattices where a common grid or 

repeating blocks cannot be identified. In such cases, the lattice is constructed in a very specific way 

and its modeling often requires a unique algorithm. In many cases, we can observe similarity to 

some well known mathematics curves, for example to a space-filling curve, e.g. Peano, Hilbert or 

Sierpinski curve; or to a specific family of fractals known as L-systems. Figure 5 shows a lattice 

that was developed in the form similar to a space-filling curve. We can easily imagine that by add-

ing further loops we could produce a curve that would cover the window completely.  
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Fig. 5 This lattice was created in the form of a space-filling curve 

 

3   Line segments and turtle graphics 

Most Chinese lattice patterns can be modeled using line segments in 2D. To do so, we need a 

set of commands that would allow us to produce line segments and transform the obtained geome-

try objects. MuPAD gives us two methods of working with line segments. 
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The coordinate method: a method using coordinates of points in 2D or 3D and the commands 

plot::Line2d([x1,y1],[x2,y2]) to create a line segment in 2D, and 

plot::Line3d([x1,y1,z1],[x2,y2,z2]) to create line segment in 3D.  

 

The turtle graphics method: a method that does not require coordinates of points, instead using a 

sequence of instructions describing the movements of the turtle. This may look like the following 

MuPAD code: 

Z := plot::Turtle(): 
Z::right(PI/2): 
Z::forward(1): 
Z::left(PI/2): 
Z::forward(1): 
Z::push(): 
Z::forward(1): 
Z::pop(): 
Z::right(PI/2): 
Z::forward(1): 
plot(Z); 

  
At the start, our turtle is located at the center of the coordinate system and is facing upwards 

(we call it North). In our code, the first command after initiating the turtle was to order the turtle to 

turn right (East), and then draw a line segment one unit long; this is then followed by further com-

mands. The concept of the turtle graphic in MuPAD was described in detail in [3]. 

In many situations, using turtle graphics is more convenient than using the coordinate method 

– we can more easily follow the pattern of a lattice. In other situations, it will be faster to develop 

the building blocks using coordinates than with the turtle method. In general, the turtle method will 

require more code than the coordinate method.  

4   Modeling grid-based lattices 

Depending on the kind of the grid as well as the complexity of the filling pattern, modeling 

grid-based lattice can be a more or less time-consuming task. In order to demonstrate how such a 

lattice can be created we will develop an algorithm for the lattice shown in figure 2. We will start 

by creating the filling pattern, then we will develop the grid, and finally we will combine both parts 

of the code in order to produce the complete lattice.  

In this example the filling pattern is very simple and it can be obtained by using just a few 

commands for the turtle. In fact, we can split it into two parts – left and right, model each of them 

separately and then join them together. 

R := plot::Turtle(): // here we start creating the right side 
R::right(PI/2): 
R::forward(1): 
R::push(): 
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R::left(PI/2): 
R::forward(2): 
R::pop(): 
R::right(PI/2): 
R::forward(1): 
R::left(PI/2): 
R::forward(2): // here we finished creating the right side 
L := plot::Rotate2d(PI, R): // here we create the left side 
P1 := plot::Group2d(R,L): // here we assemble the whole pattern 
plot(P1, Axes=Boxed) 

 
We plotted the pattern and the coordinate system. This way we can see where the pattern is lo-

cated and what its size is – later we will move it over the plane and we will need exact numbers for 

translations of the pattern. From the graph we can easily notice that the center of the pattern is ex-

actly in the point (0,0), its width is 6 units and height is 4 units.  

In our construction we will need also a mirror copy of the pattern. This can be done by apply-

ing a reflection about the line passing through the points (0,1) and (0,-1). 

P2 := plot::Reflect2d([0,1], [0,-1],P1): 

Having both patterns ready, we can think how the grid should be developed. In this example, 

we can create a simple procedure with the two parameters n and m to develop a grid with n+1 ver-

tical bars and m+1 horizontal bars.  

Grid := proc(n,m) 
local grid, i, j, vertical, horizontal; 
begin 
   grid :=[]: 
   for i from 0 to n do  
     for j from 0 to m do 
       vertical := plot::Line2d([6*i, 0], [6*i, 4*m]): 
       horizontal := plot::Line2d([0, 4*j], [6*n, 4*j]):  
       grid := grid.[vertical].[horizontal]: 
     end_for: 
   end_for: 
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   return(op(grid)) 
end_proc: 

Note, in this procedure we explicitly request that vertical bars will be placed every 6 units and 

horizontal bars every 4 units – this is related to the dimensions of the filling pattern. The graph be-

low shows what we have obtained with n=5 and m=4. 

plot(Grid(5,4)) 

 
A slightly similar procedure can be used to create the complete filling for the lattice. There are 

two major changes. We use here the two elements P1 and its mirror reflection P2. We choose them 

depending on horizontal and vertical coordinates of the grid cell where the pattern will be inserted. 

For cells where i+j is even, we use P1, while for cells where i+j is odd, we use P2. The second 

change is that each element of the filling is translated additionally 3 units to the right and 2 units up 

in order to fit it into the right location.  

  

Filling := proc(n,m) 
local structure, i, j; 
begin 
   structure := []: 
   for i from 0 to n-1 do 
     for j from 0 to m-1 do  
        if (i+j) mod 2 = 0 then  
           element := plot::Translate2d([i*6+3,j*4+2],P1) 
        else 
           element := plot::Translate2d([i*6+3,j*4+2],P2) 
        end_if: 
        structure := structure.[element]: 
     end_for: 
   end_for: 
    return(op(structure)) 
end_proc: 
 
plot(Filling(5,4), Axes=Boxed) 
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Finally, by combining the filling and the grid we will obtain the complete pattern. We will as-

semble the code into a small procedure – ChineseLattice(n,m). The role of parameters n and m 

is the same as shown in the previous procedures – to define number of columns and rows for the 

whole lattice. Here is the procedure and the obtained output from it. 

ChineseLattice := proc(n,m) 
begin 
   plot::Group2d(Grid(n,m), Filling(n,m)): 
end_proc: 
 
plot(ChineseLattice(5,4)) 

 
A complete program for this lattice, with a few minor improvements, is enclosed in appendix 1.     
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Fig. 6 Lattices on the balcony of Zhouzhuang’s entrance gate 

5   Block-based lattices – the Zhouzhuang lattice case study 

Block-based lattices are very popular in door and window construction. We will investigate 

this case using a lattice that is frequently used in Shanghai area. For the purpose of this paper, we 

will refer to it as the Zhouzhuang lattice.   

The very first Chinese lattice that everybody can see when entering Zhouzhuang is the lattice 

on the balcony of the entrance gate (see fig. 6). The same or very similar pattern can be found in 

many other places in Zhouzhuang. This is the pattern that we will call the Zhouzhuang lattice
2
. The 

lattice looks very simple and we will use it in our first investigation.  

There are five windows, all with an identical lattice. We can also see that each lattice itself is 

built out of repeating blocks separated by horizontal lines.  

Finally each of these blocks (see the picture next to this text) can be decom-

posed to four, almost identical parts: bottom-left, bottom-right, top-left and 

top-right. These four parts overlap in the center of the block. The central 

square is the common element of all four parts. 

In fact, the bottom-left and top-right parts are identical, while the bot-

tom-right and top-left parts are a mirror reflection of the bottom-left. There-

fore, we only have to create one of these parts and then transform them to 

obtain the three other parts.  

We will start our construction by creating the swastika-like pattern that forms the bottom-left 

part of a single block.  

The MuPAD turtle code for the bottom-left part of the block will look as follows: 

Z := plot::Turtle(): 

                                                 
2
 It is important to note that the Zhouzhuang lattice does not exist in Daniel Sheets Dye’s book, though a similar 

pattern is mentioned as L8a ([1], page 203). 
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Z::right(PI/2): 
Z::forward(1): 
Z::left(PI/2): 
Z::forward(1): 
Z::push(): 
Z::forward(1): 
Z::pop(): 
Z::right(PI/2): 
Z::forward(1): 
 
Cross1 := plot::Group2d( 
   Z, 
   plot::Rotate2d(Z,PI/2), 
   plot::Rotate2d(Z,PI), 
   plot::Rotate2d(Z,3*PI/2) 
 ): 
 
plot(Cross1,Axes=Boxed) 

 
While plotting this pattern, we deliberately forced MuPAD to plot the axes of the coordinate sys-

tem. This way, we are able to check the size of the pattern and its location. Note – the swastika-like 

cross was obtained by taking four rotated instances of the very same zigzag that we had created 

while demonstrating how turtle graphics work. 

We can now produce a mirrored version of this cross. We take Cross1 and we reflect it about 

the line passing through the points (0,-1) and (0,1).  

Cross2 := plot::Reflect2d([0,-1],[0,1], Cross1): 

Having these two elements ready, we can start assembling the interior pattern of the whole block.  

TL := plot::Translate2d([-1.5,  1.5], Cross2): 

TR := plot::Translate2d([ 1.5,  1.5], Cross1): 
BL := plot::Translate2d([-1.5, -1.5], Cross1): 
BR := plot::Translate2d([ 1.5, -1.5], Cross2): 
 
plot(TL, TR, BL, BR, Axes=Boxed) 
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In order to complete the whole block we need a frame around of it. This can be done with a few 

simple orders for the turtle. We will simplify our work by writing a simple program using a for-do 

loop.  

F := plot::Turtle(): 

for i from 1 to 4 do  
   F::forward(7), F::right(PI/2) 
end_for: 
F := plot::Translate2d([-3.5,-3.5],F): 
plot(F, Axes=Boxed) 

By grouping the obtained parts BL, BR, TL, TR and F we produce the whole block.  

Net1 := plot::Group2d(TL, TR, BL, BR, F, LineWidth=4*unit::pt, LineColor=RGB::Brown): 
Net2 := plot::Group2d(TL, TR, BL, BR, F, LineWidth=2*unit::pt, LineColor=RGB::Gold): 
plot(Net1) 

 

 
 

Finally, we can develop a procedure that will allow us to replicate the obtained block rightwards 

and upwards as many times as we wish.  

Lattice := proc(thing, w, h, n, m, offset) 

begin 
   objects := []: 
   for i from 1 to n do 
      for j from 1 to m do 
         objects := objects.[plot::Translate2d([i*(w+offset),j*(h+offset)], thing)] 
      end_for 
   end_for, 
   return(op(objects)) 
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end_proc: 

The procedure uses six input parameters: thing – this is the object that we wish to repeat; w and h 

are width and height of the block respectively; n and m are the number of times we wish to repeat 

the block to the right and up. Finally offset is the small gap that we have to add between two 

neighboring blocks to avoid overlapping them.  

The code below will create a Zhouzhuang lattice with 3 rows and four columns. In order to 

make the final result more appealing, we produce two blocks: Net1 with 4 points line width (brown 

color), and Net2 with 2 point line width (gold color); then we overlap them. 

plot(Lattice(Net1, 7, 7, 4, 3, 0.2), Lattice(Net2, 7, 7, 4, 3, 0.2)) 

 
 

The complete program for this lattice is enclosed in appendix 2. 

6   A lattice based on the Peano curve 

While analyzing existing examples of Chinese lattices, we can often spot a pattern that resem-

bles one of the well-known mathematical curves. In this example, we will look on the Peano curve 

and show how we can construct a Chinese lattice based on this curve. Patterns similar to the lattice 

developed in this section can be found in Chengtu in Szechwan province (see [1] page 43).  

Let us recall the shape and properties of the Peano curve. There are many ways of defining a 

Peano curve. One of the simplest definitions uses the L-system concept.  

In order to create a Peano curve we will need an L-system with the following axioms: 

1. Variables: F  

2. Constants: +, - 

3. Start: F  

4. Processing rule: F = F+F-F-F-F+F+F+F-F  

Then we proceed through string rewriting iterations. In the step 0 we have the string F; in the 

step 1 the string F will be replaced by F+F-F-F-F+F+F+F-F; in the step 2 each F in the last 

resulting string will be replaced by F+F-F-F-F+F+F+F-F; and this process we may continue 

as many times as we wish. We can learn more about L-systems in [3] and [5].  
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We can use turtle graphics to illustrate any L-system. The turtle moves a given step forward 

each time (this is F) and can turn left (-) or right (+) at a given angle. For a Peano curve the an-

gle should be π/2. This way the turtle will draw a graph illustrating the given L-system. Figure 

7 shows graphs representing three consecutive approximations of the Peano curve. The angle 

used here is slightly smaller than π/2 in order to demonstrate that the curve does not intersect 

itself.  

   
Fig. 7 Three approximations of the Peano curve (1

st
, 2

nd
 and 3

rd
 generations) 

 

In our construction, we will use the curve obtained in the second generation. This way, it will 

be easier to demonstrate the concept. However, the curve obtained in any later generation 

could be used as well, in which case the resulting lattice would be larger and more complex.  

 Let us start with a simple command to create the Peano curve of second generation in Mu-

PAD. 

Peano := plot::Lsys(PI/2, "F", "F" = "F+F-F-F-F+F+F+F-F", Generations=2): 

Now we can produce two instances of the Peano curve – one with line width 4 points, for the 

outline, and another one with line width 2 points, for the interior of the pattern. This way we will be 

able to obtain a double line effect.  

PeanoOutline := plot::modify(Peano, LineWidth=4*unit::point, LineColor=RGB::Indigo): 
PeanoInterior := plot::modify(Peano, LineWidth=2*unit::point, LineColor=RGB::Gold): 

In exactly the same way we will create the frame around.  

FrameOutline := plot::Rectangle(-4.0..4.0,-0.0..9.0,  
   LineWidth=4*unit::pt, 
   LineColor=RGB::Indigo 
): 
FrameInterior := plot::Rectangle(-4.0..4.0,-0.0..9.0,  
   LineWidth=2*unit::pt, 
   LineColor=RGB::Gold 
): 

Finally, we can combine all obtained elements into a lattice and plot the lattice.  

PeanoLattice := plot::Group2d( 
   FrameOutline,  
   PeanoOutline,  
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   PeanoInterior,  
   FrameInterior 
): 
plot(PeanoLattice) 

 
The obtained lattice can be modified by inserting additional horizontal or vertical bars joining 

the interior with the frame, and filling the large empty space in each corner. The complete MuPAD 

program for the Peano lattice is enclosed in appendix 3.  

7   Summary 

Modeling Chinese lattices with MuPAD can be a very interesting activity. Some of the patterns 

are relatively easy to develop using simple elements followed by translations and rotations, finally 

grouping the simple patterns into more complex ones. Some of the lattices may require a complete-

ly different approach. For example, many of them will require a continuous turtle path covering the 

whole lattice. Such a lattice may be then obtained using one or more turtle paths combined togeth-

er. Then, there are lattices where an application of the L-system method seems to be appropriate. In 

such cases, higher generations of the L-system may lead to new, very complex patterns.  

In every case, the method that we use to model a lattice should be as natural as possible, and 

probably should mimic the way of thinking of the craftsman designing the real lattice. For example, 

it is natural to create the main blocks of the interior of a lattice, then join them together and com-

bine with a frame.  
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Appendix 1: Complete MuPAD program for the grid-based lattice  

 

ChineseLattice01 := proc(n,m) 
local R,L, P1, P2, Grid, Filling;  
begin 
// commands to create one side of the basic pattern  
   R := plot::Turtle(): 
   R::right(PI/2): 
   R::forward(1): 
   R::push(): 
   R::left(PI/2): 
   R::forward(2): 
   R::pop(): 
   R::right(PI/2): 
   R::forward(1): 
   R::left(PI/2): 
   R::forward(2):              //here is right side of the basic pattern 
   L := plot::Rotate2d(PI, R): // here is left side of the basic pattern 
// complete basic pattern normal and mirrored version 
   P1 := plot::Group2d(R,L): 
   P2 := plot::Reflect2d([0,1], [0,-1],P1): 
 
//Sub-procedure to create the frame 
   Grid := proc(n,m) 
   local grid, i, j, vertical, horizontal; 
   begin 
      grid :=[]: 
      for i from 0 to n do  
         for j from 0 to m do 
            vertical := plot::Line2d([6*i, 0], [6*i, 4*m]): 
            horizontal := plot::Line2d([0, 4*j], [6*n, 4*j]):  
            grid := grid.[vertical].[horizontal]: 
         end_for: 
      end_for: 
   return(op(grid)) 
end_proc: 
 
//Sub-procedure to create filling patterns 
Filling := proc(n,m) 
local structure, i, j; 
begin 
   structure := []: 
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   for i from 0 to n-1 do 
      for j from 0 to m-1 do  
         if (i+j) mod 2 = 0 then  
            element := plot::Translate2d([i*6+3,j*4+2],P1) 
         else 
            element := plot::Translate2d([i*6+3,j*4+2],P2) 
         end_if: 
         structure := structure.[element]: 
      end_for: 
   end_for: 
   return(op(structure)) 
end_proc: 
 
// Now we group the framework and the filling.  
// We create two identical objects, one with thin line and another  
// one with thick line. This way we will get a kind of 3D effect. 
 
   plot::Group2d( 
      plot::Group2d(Grid(n,m), Filling(n,m),  
         LineWidth=3*unit::pt, LineColor=RGB::Indigo), 
      plot::Group2d(Grid(n,m), Filling(n,m),  
         LineWidth=1*unit::pt, LineColor=RGB::Yellow) 
   ): 
end_proc: 

Appendix 2 – Complete MuPAD program for the block-based lattice 

 

ChineseLattice02 := proc(n,m) 
local Z, Cross1, Cross2, TL, TR, BL, BR, F, MPattern; 
begin 
   Z := plot::Turtle(): 
   Z::right(PI/2): 
   Z::forward(1): 
   Z::left(PI/2): 
   Z::forward(1): 
   Z::push(): 
   Z::forward(1): 
   Z::pop(): 
   Z::right(PI/2): 
   Z::forward(1): 
 
   Cross1 := plot::Group2d( 
      Z, 
      plot::Rotate2d(Z,PI/2), 
      plot::Rotate2d(Z,PI), 
      plot::Rotate2d(Z,3*PI/2) 
   ): 
  
   Cross2 := plot::Reflect2d([0,-1],[0,1],Cross1): 
   TL := plot::Translate2d([-1.5, 1.5], Cross2):  
   TR := plot::Translate2d([1.5,1.5], Cross1): 
   BL := plot::Translate2d([-1.5, -1.5], Cross1): 
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   BR := plot::Translate2d([1.5,-1.5], Cross2): 
 
// frame around the main pattern 
   F := plot::Turtle(): 
   for i from 1 to 4 do  
      F::forward(7), F::right(PI/2) 
   end_for: 
   F := plot::Translate2d([-3.5,-3.5],F): 
 
   A1 :=  plot::Group2d(TL, TR, BL, BR, F,  
             LineWidth=3*unit::pt, LineColor=RGB::Indigo): 
   A2 :=  plot::Group2d(TL, TR, BL, BR, F,  
             LineWidth=2*unit::pt, LineColor=RGB::Yellow): 
   MPattern := plot::Group2d(A1,A2): 
 
   Lattice := proc(thing, w, h, n, m, offset) 
     begin 
        objects := []: 
        for i from 1 to n do 
           for j from 1 to m do 
              objects := objects.[plot::Translate2d( 
                 [i*(w+offset),j*(h+offset)], thing)] 
           end_for 
        end_for, 
      return(op(objects)) 
  end_proc: 
 
  Lattice(MPattern, 7, 7, n, m, 0.1) 
end_proc: 

Appendix 3 – Complete MuPAD program for Peano lattice 

PeanoLattice := proc() 
local Peano, FrameOutline, FrameInterior, PeanoOutline, PeanoInterior; 
begin 
   Peano := plot::Lsys(PI/2, "F", "F" = "F+F-F-F-F+F+F+F-F", Generations=2): 
 
   FrameOutline := plot::Rectangle(-4.0..4.0,-0.0..9.0,  
      LineWidth=4*unit::pt, 
      LineColor=RGB::Indigo 
   ): 
 
   FrameInterior := plot::Rectangle(-4.0..4.0,-0.0..9.0,  
      LineWidth=2*unit::pt, 
      LineColor=RGB::Gold 
   ): 
 
   PeanoOutline := plot::modify(Peano,  
      LineWidth=4*unit::point,  
      LineColor=RGB::Indigo 
   ): 
   PeanoInterior := plot::modify(Peano,  
       LineWidth=2*unit::point,  
       LineColor=RGB::Gold 
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   ): 
 
   plot::Group2d( 
      FrameOutline,  
      PeanoOutline,  
      PeanoInterior,  
      FrameInterior 
   ): 
end_proc: 


